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A “hemispheres-in-cell” geometry is provided for prediction
of colloid retention during transport in porous media. This new
geometry preserves the utilities provided in the Happel sphere-
in-cell geometry; namely, the ability to predict deposition for a
range of porosities, and representation of the influence of
neighboring collectors on the fluid flow field. The new geometry,
which includes grain to grain contact, is justified by the
eventual goal of predicting colloid deposition in the presence
of energy barriers, which has been shown in previous literature
to involve deposition within grain to grain contacts for colloid:
collector ratios greater than approximately 0.005. In order
to serve as a platform for predicting deposition in the presence
of energy barriers, the model must be shown capable of
quantitatively predicting deposition in the absence of energy
barriers, which is a requirement that was not met by previous
grain to grain contact geometries. This paper describes
development of the fluid flow field and particle trajectory
simulations for the hemispheres-in-cell geometry in the absence
of energy barriers, and demonstrates that the resulting
simulationscomparefavorably toexistingmodelsandexperiments.
A correlation equation for predicting collector efficiencies in
the hemispheres-in-cell model in the absence of energy barriers
was developed via regression of numerical results to
dimensionless parameters.

Introduction
No mechanistic colloid transport theory yet exists to predict
colloidal deposition in the environment, where repulsion
typically exists between colloids and porous media grain
surfaces, despite the fact that the transport and deposition
of colloidal particles in saturated porous media is essential
to various environmental processes including riverbank
filtration, prediction of pathogen transport distances from
septic systems, and colloid-facilitated contaminant transport.

The theoretical framework commonly used to predict
colloid transport and deposition in porous media is classic
colloid filtration theory (CFT) (1–4). CFT describes fluid flow
and colloid transport in porous media based on the Happel
sphere-in-cell model (5), which represents porous media via

a solid sphere encircled by a spherical fluid shell, where the
thickness of the fluid shell is chosen such that the porosity
of this unit cell is equal to the actual porosity of a packed
bed. The probability of colloid interception and retention in
this cell is determined through particle trajectory (or flux)
simulations, which are based on a mechanistic force and
torque balance on the colloid within the flow field of the unit
cell; wherein, for the particle trajectory approach, the forces
are assessed, the colloid is translated accordingly, and the
process repeated until the colloid either exits, or is retained
within the cell (1–3). These mechanistic numerical simula-
tions yield the number of colloids that intercept the collector
relative to the number of colloids that enter the unit cell,
which is the so-called collector efficiency (η). The values of
η determined under a range of conditions (e.g., variety of
porosities, colloid sizes) have been regressed to dimensionless
parameters to provide correlation equations for estimation
of η (2, 3). CFT serves as an excellent predictive tool for colloid
retention in simple porous media; but only when energy
barriers to deposition are absent (favorable conditions) (6–8).
When energy barriers to deposition are present (unfavorable
conditions), the mechanistic numerical simulations predict
that no deposition will occur. The mechanistic simulations
underlying CFT indicate that colloids can overcome energy
barriers only when the barriers are very small, e.g., < ∼10 kT,
where k is the Boltzmann constant and T is the absolute
temperature.

To develop mechanistic predictors of retention in the
presence of energy barriers, the essential mechanisms of
colloid retention must be identified and incorporated.
Experiments indicate that places where colloid retention is
possible include: (i) “Holes” in the energy barrier where the
energy barrier is reduced or eliminated via surface roughness
or heterogeneity (e.g., heterodomains of attractive charge)
(9, 10). (ii) Grain-to-grain contacts where colloids may be
wedged between energy barriers and push through one of
them into contact with the surface (11, 12), or straining, which
is not clearly defined, but which conceptually involves grain-
to-grain contacts (13). (iii) Zones of low fluid drag where
secondary energy minimumsassociated colloids may be
retained without attachment (8, 14, 15).

Colloid retention in the presence of energy barriers by
the above mechanisms has been demonstrated in mecha-
nistic simulations in unit cells containing multiple grains in
various packing arrangements (11, 16). These simulations
corroborate expectations from experiments; however, to serve
as a predictive framework, mechanistic simulations should
provide good prediction in both the absence and presence
of energy barriers. Unfortunately, the packing arrangements
examined to date predict collector efficiencies in the absence
of energy barriers that are far higher than those predicted by
existing theory, as well as those determined from experiments
(11). Furthermore, to serve as a predictive framework, these
unit cells need to be capable of representing the spectrum
of porosities encountered in environmental systems. The
fixed porosities of the unit cells (e.g., 0.26 for dense cubic
packing and 0.476 for simple cubic packing) limit their
suitability to represent a range of porosities.

The foundation for a general colloid filtration theory (for
prediction in both the absence and presence of energy
barriers) needs to meet at minimum the following three
criteria: (1) able to represent a range of porosities; (2) provide
accurate prediction of η in the absence of energy barriers;
(3) incorporate attributes to allow colloid retention in the
presence of energy barriers (e.g., grain-to-grain contacts).
The Happel sphere-in-cell model provides an elegant tem-
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plate not only because it is able to represent various porosities,
but also because the flow field surrounding the solid grain
is enveloped within an outer boundary that represents the
“divide” separating the influences of adjacent grains in the
flow field (achieved via zero radial velocity and zero non-
tangential stress conditions at this boundary). To achieve
these physically meaningful boundaries, the Happel sphere-
in-cell model is geometrically nonphysical, meaning that the
Happel unit cells are not “stackable”, i.e., one cannot
assemble a meaningful porous medium by assembling
multiple Happel unit cells. However, the unit cells have
known volume, allowing determination of the number of
unit cells corresponding to a known volume of porous media.
By incorporating these features, the Happel sphere-in-cell
model captures the relevant processes in fluid flow and
particle transport in porous media in the absence of energy
barriers, as demonstrated by its excellent predictive capability
under these conditions.

For the purpose of developing predictive capability in
both the absence and presence of energy barriers, we propose
a new unit cell (the hemispheres-in-cell model), which

preserves the utilities provided in the Happel sphere-in-cell
model, but which incorporates features (i.e., grain-to-grain
contact) that potentially allow colloid retention in the
presence of energy barriers. The purpose of this paper is to
demonstrate the performance of the hemispheres-in-cell
model under favorable conditions (in the absence of energy
barriers to deposition), e.g., its accuracy of prediction relative
to existing theory.

Model Development
Numerical Analysis of Fluid Flow. Like the Happel sphere-
in-cell model, the Hemispheres-in-cell model represents a
spectrum of porosities in porous media by varying the outer
fluid envelope radius (b) relative to the collector radius (ac)
(Figure 1a). Unlike the Happel sphere-in-cell model, the
Hemispheres-in-cell model incorporates a grain-to-grain
contact, which complicates obtaining an accurate fluid flow
field proximal and distal to the grain surface. The lack of
availability of closed-form solutions for the fluid flow field
in the hemispheres-in-cell model (see Supporting Informa-
tion (SI) for more details) requires derivation of the flow field

FIGURE 1. (a) The hemispheres-in-cell model geometry contains a grain-to-grain contact and can represent a spectrum of porosities
by varying the fluid shell (light sea green) thickness (b -ac) relative to the collector (blue) radius (ac). The flow is directed
perpendicular to the line connecting the two-hemisphere centers. (b) The quadrant of the hemispheres-in-cell model confined
between (x ∈ (0, ac), y ∈ (-b, 0)) with all the symmetry planes (x ) 0, x ) ac, and y ) 0) shown; the positions of forward and rear
stagnation points were indicated by z ) -ac and z ) ac, respectively. (c) An image of representative computational meshes
constructed for (b), with the inset showing an image of meshes close to the grain-to-grain contact.
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using computational fluid dynamics, as was done here using
STAR-CD and Star-ccm+ (17), with meshes constructed
under guidelines ensuring convergence and stability (see SI).
Because of symmetry on the x ) ac and y ) 0 planes, mesh
simulations were required only for one quadrant; e.g., the
quadrant defined by (x ∈ (0, ac), y ∈ (-b, 0)) of the
hemispheres-in-cell model (Figure 1b) was composed of
∼1.06 million cells (Figure 1c), for the case where ε ) 0.37,
ac ) 255 µm (Table 1), yielding b ≈ 300.79 µm, and fluid shell
thickness ≈ 45.79 µm.

Boundary conditions for the hemispheres-in-cell model
include no-slip boundaries at grain surfaces, nontangential
stress at the fluid envelope outer boundary, symmetry
boundaries at the outer lateral cell boundaries, and stipula-
tions on velocity (or pressure) at the cell entry and exit planes.
Because the STAR-CD and Star-ccm+ software used in our
simulations do not provide options to directly implement
the nontangential stress condition on the fluid-fluid inter-
face, this condition was implemented by adapting the
boundary condition equation imposed on the outer fluid
boundary of the Happel sphere-in-cell model to the Hemi-
spheres-in-cell model, as described in the SI. The fluid flow
field was developed via solution of the steady-state Navier-
Stokes equation under laminar flow hydrodynamics, in
conjunction with the continuity equation. Details on the
resulting fluid flow field and estimation of pressure drop in
the hemispheres-in-cell model are provided in the SI.

Particle Trajectory Analysis. A Lagrangian approach was
used to mechanistically simulate particle trajectories based
on the classical Langevin equation:

where m is the particle mass, m* is the virtual mass
(approximated by one-half the displaced fluid volume by
the particle) (18), u is the particle velocity vector, and the
terms on the right-hand-side of the equation are the forces
acting on the particle. These forces include fluid drag (FD),
gravity (FG), shear lift (FL), electrostatic (FEDL), van der Waals
(FvdW), and Brownian forces (FB), with expressions for these
forces provided in Table 2. Among the forces, FL, FEDL, and
FvdW only act on the particle in the normal direction relative
to the collector surface. Hydrodynamic retardation correction
of the drag and Brownian forces (shown in Table 2) is
described in the SI.

An adaptive time-stepping strategy was used in integrating
all forces acting on the particle to obtain particle velocities
according to eq 1. The constraints on the adaptive time-
stepping strategy are described in the SI. Since the adaptive
time-stepping strategy allows accounting for the rapid change
of colloidal forces near a surface, first-order integration of
the forces acting on the particles was implemented to
determine the particle velocity according to eq 2. At each

trajectory step, the integration was carried out in the normal
and tangential direction relative to the collector surface
respectively. The particle velocity vector (un, ut) at time step
τ was obtained from previous time step τ - 1 as follows
(derivation of these expressions is provided in the SI):

where Fn
GRP ) FG

n + FL +FEDL + FvdW + FB
n and Ft

GRP ) FG
t

+FB
t; the superscript and subscript n and t refer to the normal

and tangential direction with respect to the collector surface
respectively.

Upon resolving the particle velocity vector, the updated
particle position was determined from first-order integration
(dx/dt)u), where x is the particle position vector. Following
the trajectory step (translation), forces acting on the particle
were determined, and the process was repeated until the
particle exited, or was retained within the unit cell via
attachment to the collector surface (defined as h < 1 nm), or
remained within the cell without attachment despite the
simulation time (2400 s) being twice the time of injection of
the last colloid (1200 s).

Coupling Particle Trajectory Analysis to Computational
Flow Field. Evaluating the forces acting on the particle
required determining the fluid velocity vector at the particle
location, which required determining the nearest compu-
tational mesh node to the particle. Due to the large number
of mesh cells (more than 1 million), the computational
expense of determining the closest mesh node to the colloid
location needed to be minimized. To reduce computational
expense, an array was created for each velocity node that
listed the neighboring velocity nodes (nodes from adjacent
face-sharing mesh cells). After introducing the colloid to a
particular cell at the start of the simulation, the closest velocity
node was determined from the set of nodes including the
original node as well as all of its neighbors, as well as the
neighbors of the neighbors, to ensure determination of the
closest node in the polyhedral mesh. The distances between
the colloid and the collector surfaces were computed by
approximating the meshed surfaces with the ideal spherical
surface. This was justified by the extremely fine discretization
of the mesh at the grain surface. Simulations were performed
in the presence of energy barriers to check whether slight
nonparallel orientation of fluid velocity vectors (parallel to
mesh elements) relative to the idealized spherical surface
resulted in colloid attachment. The lack of colloid retention
on the open grain surface in simulations in the presence of
energy barriers indicates that approximating the mesh surface
with an idealized sphere was reasonable.

The entry and exit planes to the hemispheres-in-cell model
are located at the z ) -b and z ) b planes, respectively. At
the entry plane, colloids were introduced via randomly
chosen x and y coordinates ranging between x ) 0 to ac, and
y)-b to 0. Colloids initially located outside the fluid envelope
were subject to fluid drag corresponding to the approach
velocity. Once colloids entered into the fluid envelope, a
complete force balance according to eq 1 was executed.
Colloids that exit the fluid shell downstream of the grain-
to-grain contact (i.e., z > 0) subsequently translated down-
gradient via fluid drag (corresponding to the approach
velocity) until they exited the system at the exit plane (z )
b).

TABLE 1. Lagrangian Trajectory Simulation Parameters

parameter value

collector diameter, dc 510 µm
porosity, ε 0.37
approach velocity, U 1.48 m/day
particle density, Fp 1055 kg/m3

fluid density, Ff 998 kg/m3

fluid viscosity, µ 9.98 × 10-4 kg ·m/s
Hamaker constant, H 3.84 × 10-21 J
absolute temperature, T 298.2 K
time step, ∆t 10 MRTa (lower limit)

a MRT refers to the particle momentum relaxation time.

(m + m*)
du
dt

) FD + FG + FL + FEDL + FvdW + FB

(1)

un
τ )

(m + 2
3

πap
3Ff)un

τ-1 + (Fn
GRP + 6πµapvnf2)∆t

(m + 2
3

πap
3Ff +

6πµap

f1
∆t)

ut
τ )

(m + 2
3

πap
3Ff)ut

τ-1 + (Ft
GRP +

f3

f4
6πµapvt)∆t

m + 2
3

πap
3Ff +

1
f4

6πµap∆t

(2)
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Required Number of Trajectories. The probabilistic
nature of Brownian forces requires that a sufficiently large
population of colloid trajectories be simulated to determine
a robust value for the collector efficiency. Simulations were
performed under a range of fluid flow conditions representing
ambient to forced-gradient groundwater flow, corresponding
to average pore water velocities ranging from 4 to 400 m/day.
Under the 4 m/day condition, a constant simulated value of
η required 4000 particle trajectories; whereas, under the
40-400 m/day conditions, obtaining a constant value of η
required between 10 000 and 40 000 trajectories.

Model Results and Discussion
Simulated Collector Efficiencies As Functions of Particle
Size and Fluid Velocity. Simulated collector efficiencies from
the hemispheres-in-cell geometry are shown as a function
of particle size at three representative fluid velocities (Figure
2). For all conditions, the simulated collector efficiencies show
a minimum value in colloid size range from 1 to 3 µm (specific
minimum depending on fluid velocity), a trend that has been
well established in previous models and experiments (1–3, 8).
The simulated collector efficiency for a given particle size
decreases with increasing fluid velocity, a trend that is also
expectedfrompreviousmodelsandexperiments(1–3,8,12,20).
Variability in the simulated values of η decreases with
increasing numbers of trajectories as described in the SI.

Simulated collector efficiencies from the Happel model
via regression equations from Rajagopalan and Tien (2, 21)
(RT) and Tufenkji and Elimelech (3) (TE) are shown (Figure
2). Note that as a result of subsequent clarifications to the
RT equation, the RT equation refers to eq 4 in Nelson and
Ginn (1) or eq 7.6 in Tien and Ramarao (21), and the TE
equation refers to eq 17 in Tufenkji and Elimelech (3).
Furthermore, the TE collector efficiency was normalized to
the number of colloids flowing past the solid collector (as
opposed to the solid collector plus the fluid shell); hence, in
order to compare directly to the RT and the hemispheres-
in-cell models, the η from the TE equation must be multiplied
by γ2, where γ ) (1 - ε)1/3, as explained in Nelson and Ginn
(1), and where ε is porosity. The comparison in Figure 2
shows good general agreement of the hemisphere-in-cell
model with these two Happel-based models. Specifically,
the hemisphere-in-cell collector efficiencies for the <1 µm
particles (Brownian regime) match closely the TE results,
but fall below the RT results, due to differences in treatment
of hydrodynamic retardation and van der Waals interactions,
as discussed in Tufenkji and Elimelech (3) and Nelson and
Ginn (1). The convergence of results between the hemisphere-
in-cell and TE (Happel sphere-in-cell) for <1 µm colloids
suggests that the difference in these two model geometries

TABLE 2. Expressions for Forces Considered in the Langevin Equation

forces expressions references

electric double layer

FEDL ) 4πεrε0κapςpςc

×[ exp(-κh)
1 + exp(-κh)

-
(ςp - ςc)

2

2ςpςc

exp(-2κh)
1 - exp(-2κh)] 23

van der Waals FvdW ) -
Hap

6h2

λ(λ + 22.232h)
(λ + 11.116h)2 24

shear lift FL )
6.46µap

3(∂v/∂r)3/2

ν0.5 25, 26

Brownian FB ) R�2	kT
∆t 27, 28

drag (normal) FD
n ) -

6πµapun

f1
+ 6πµapvnf2 29, 30

drag (tangential) FD
t ) -

6πµaput

f4
+

f3

f4
6πµapvt 31–33

gravitational FG ) 4
3

πap
3(Fp - Ff)g -

εrε0 is the permittivity of water; κ is the reciprocal Debye length; 
p,
c are the zeta potential of the particle and the
collector respectively; h is the separation distance between the particle and the collector; λ is the characteristic wave
length; µ and ν are the dynamic and kinematic viscosity of the fluid respectively; ∂v/∂r is the fluid velocity gradient normal
to the collector surface; R is the Gaussian random number; 	 is the friction coefficient (equal to 6πµap in the bulk solution);
k is the Boltzmann constant, and T is the absolute temperature; Fp and Ff are the density of the particle and the fluid
respectively; f1, f2, f3, and f4 are universal hydrodynamic functions. The superscript and subscript n and t refer to the
direction normal and tangential to the collector surface respectively.
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produce negligible differences in colloid deposition (in the
absence of energy barriers) for <1 µm colloids.

For larger particle sizes (e.g., >2 µm), the hemisphere-
in-cell collector efficiencies were significantly lower (∼a factor
of 2) than both the RT and TE results (Figure 2), suggesting
that differences in the hemisphere-in-cell versus Happel
sphere-in-cell geometries (presence versus absence of grain-
to-grain contact) slightly influenced collector efficiencies in
the absence of energy barriers. Alternatively, this difference
may reflect (i) errors in our particle trajectory analysis; (ii)
the use of a computational flow field.

Validation of Particle Trajectory Analysis and Numerical
Flow Field. To examine the influence of our particle trajectory
simulations, we coupled our trajectory analyses with the
Happel sphere-in-cell analytical flow field (2). The simulated
values of η agreed well with the RT and TE predictions (Figure
2a), with very slight differences in η for the largest particles
(8 and 10 µm), indicating that our particle trajectory analyses
were not responsible for differences observed in Figure 2.

To examine the influence of the computational flow field,
we constructed computational meshes for the Happel sphere-
in-cell geometry and numerically solved the flow field under
the above-mentioned boundary conditions. The simulated
values of η based on our particle trajectory analyses coupled

to the Happel cell computational flow field also agreed well
with the RT and TE results (Figure 2a), demonstrating that
the differences observed in Figure 2 were not caused by
utilization of a computational flow field for the hemisphere-
in-cell predictions. Hence, the prediction of lower collector
efficiencies (for >2 µm colloids) by the hemisphere-in-cell
model relative to the Happel-based models is due to
differences in model geometries, which may result from (i)
decreased projected area of the entry plane in the hemi-
sphere-in-cell relative to Happel sphere-in-cell geometry;
and (ii) divergent stream lines at the grain-to-grain contact
in the hemisphere-in-cell (SI Figure S3). The average pore
water velocity inside the hemispheres-in-cell collector was
approximately a factor of 1.3 higher than that inside the
Happel sphere-in-cell collector (at approach velocity of 1.48
m/day) as a result of the streamline divergence. This, coupled
with the expected decrease in η with increasing fluid velocity
(Figure 2), may produce the observed lower ηs for larger
particle sizes observed in the hemisphere-in-cell results
relative to the RT and TE Happel-based results.

Correlation Equation for η Based on the Hemispheres-
in-Cell Model. Colloid deposition predictions from the
Happel sphere-in-cell geometry have been made widely
available via correlation equations regressed to the mecha-
nistic numerical results. As described above, two widely used
correlation equations are the RT (2) and TE (3) equations.
These models provide excellent prediction of particle depo-
sition in simple porous media under favorable conditions
(absent an energy barrier). We herein provide a correlation
equation for the hemisphere-in-cell geometry; however, we
stress that the purpose of providing this correlation equation
for η is not to improve prediction of colloid deposition under
favorable conditions in simple porous media (for which the
existing equations are adequate), but rather to examine a
new geometric model (the hemispheres-in-cell) by comparing
its performance to existing models under favorable conditions
and to distribute these results with the intention of laying a
foundation for prediction of colloid retention under unfa-
vorable conditions (in the presence of energy barriers).

Following the strategy described in the SI, individual
components that contribute to η (i.e., ηI, ηG, and ηD, due to
interception, sedimentation, and diffusion mechanism re-
spectively) were simulated as a function of particle size at an
average pore water velocity of 4 m/day, and the coefficients
and exponents of the dimensionless parameters (Table 3)
were then adjusted to fit the trends for ηI, ηG, and ηD. The
overall resulting correlation equation for η in the hemi-
spheres-in-cell geometry in the absence of energy barriers
to deposition is

where the dimensionless parameters (i.e., NR, NPE, NA, NG)
are defined in Table 3, and As is a porosity-dependent
parameter defined as:

FIGURE 2. Comparison of simulated collector efficiencies (η,
open squares) with the RT and TE predictions at three
representative pore water velocities: (a) 4 m/day; (b) 40 m/day;
and (c) 400 m/day. Values for other parameters are shown in
Table 1. Also shown in panel (a) were simulated collector
efficiencies from trajectory analyses on the Happel model for
several larger particle sizes: (i) using the analytical flow field
from Rajagopalan and Tien (2) (open triangles) and (ii) using
the numerical flow field obtained from computational fluid
dynamics (open circles).

TABLE 3. List of Dimensionless Parameters in Predicting
Colloid Filtration

parameter definition description

NR dp/dc aspect ratio
NPE Udc/DBM Peclet number
NA H/(12πµap

2U) attraction number
NG 2ap

2(Fp-Ff)g/(9µU) gravity number
a dp is the particle diameter; DBM is the bulk diffusion

coefficient (described by Stokes-Einstein equation); ap is
the particle radius; g is the gravitational acceleration
constant; all the other parameters are defined in Table 1.

η ≈ γ2[2.3As
1/3NR

-0.080NPE
-0.65NA

0.052 + 0.55AsNR
1.8NA

0.15

+0.2NR
-0.10NG

1.1NA
0.053NPE

0.053]
(3)
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where γ ) (1 - ε)1/3. It is worth mentioning that As accounts
for influence of neighboring collectors on the fluid flow field
in the Happel sphere-in-cell geometry. The lack of an
analytical solution to the flow field in the hemisphere-in-cell
geometry precludes development of the corresponding
expression specific to that geometry. However, we adopt this
parameter directly from the Happel sphere-in-cell geometry
with the expectation that the dependence of flow field
geometry on porosity encapsulated in As is similar in both
the Happel and hemisphere systems. The excellent agreement
of the correlation equation and the numerical simulations
across a wide range of particle sizes and fluid velocities (Figure
3) indicates that this expectation is met. The correlation
equation (i.e., eq 3) very slightly underestimates deposition
of 1 µm colloids at the low fluid velocity (4 m/day); whereas,
the equation very slightly overestimates deposition of 1 µm
colloids at the high fluid velocity (400 m/day) (Figure 3).
Comparison of predictions from the hemisphere-in-cell
correlation equation with numerical simulations was also
made for various porosity values, as described in a companion

paper (22). This comparison demonstrated that the correla-
tion equation matched numerical simulations closely across
a large range of porosities.

The hemispheres-in-cell correlation equation relates to
previous correlation equations in the following ways: (i) The
diffusion term (first term in bracket in eq 3) is nearly
equivalent to that in the TE equation, and our numerical
results in the Brownian regime (colloids < ∼1 µm) closely
match those of the TE (3). (ii) The insensitivity of the
gravitational contribution to the numerical results to porosity
(also observed by Tufenkji and Elimelech (3)) suggests that
As should not be included in the sedimentation term (third
term in bracket). (iii) Our simulations concerned a single
Hamaker constant (i.e., 3.84 × 10-21 J), therefore we adopted
the exponent for NvdW ()H/kT) provided in the TE equation
(3) and slightly modified it by observing that NvdW ) NA ×
NPE. Note, the correlation is insensitive to this parameter,
e.g., for our simulations, negligible changes occurred with
versus without inclusion of NvdW (replaced with NA × NPE) in
the first and third terms in eq 3.

Comparison with Experimental Data. Simulation of
colloidal transport at the macroscale typically involves a
deposition rate coefficient (kf), which is obtained via a
geometric relationship with the collector efficiency (η).
Although η is dependent upon the specific geometry of unit
collector, kf is not. The following relationship between kf and
η for the hemispheres-in-cell geometry was developed
following the analyses of Logan et al. (19) and Nelson and
Ginn (1), as described in the SI:

where vp is the average pore water velocity in the unit collector
and dc is the collector diameter. The deposition rate
coefficient relationship with η for the Happel sphere-in-cell
model is

FIGURE 3. Comparison of predicted collector efficiencies from
eq 3 (solid lines) with numerical simulation results from the
hemispheres-in-cell model at three representative pore water
velocities: 0, 4 m/day; O, 40 m/day; ∆, 400 m/day. Values for
other parameters are shown in Table 1.

FIGURE 4. Simulated (blue open symbols) and observed (red closed symbols 8, 20) deposition rate coefficients (kf) in the absence of
an energy barrier to deposition as a function of particle size at four fluid velocities: (a) 2 m/day; (b) 4 m/day; (c) 8 m/day; and (d)
19.38 m/day. Simulated deposition rate coefficients were calculated from eq 5 based on the hemispheres-in-cell model; and were
slightly higher than corresponding observed deposition rate coefficients.

As )
2(1 - γ5)

2 - 3γ + 3γ5 - 2γ6
(4)

kf )
3(1 - ε)

2dc
ηνp[ 3 - ε

3 - 3ε
- 2(3 - ε)

π(3 - 3ε)
cos-1(3 - 3ε

3 - ε )1/2
+

2
π�2( 3 - ε

3 - 3ε)1/2
- 1] (5)
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where η in the equation above incorporates the term (1 -
ε)2/3, as explained in Nelson and Ginn (1).

Values of kf from the hemispheres-in-cell model (via eqs
3 and 5) were compared to experimentally measured kf values
in column experiments under equivalent conditions (Figure
4 and SI Table S2). The hemispheres-in-cell values for kf

matched very closely with experimentally observed kf values,
within a factor of ∼2. The demonstrated agreement with
existing theory and experiment under favorable conditions
indicates that the hemispheres-in-cell model serves well as
a new geometry that is capable of predicting colloid transport
and retention in the absence, and potentially presence, of
energy barriers. We stress here that our goal is not to improve
prediction of colloid retention in porous media under
favorable conditions; rather, our goal is to present this
hemispheres-in-cell geometry that may potentially be used
to predict colloid retention under unfavorable conditions
(in the presence of energy barriers). In a subsequent paper
we will examine the ability of the hemispheres-in-cell model
to predict retention when energy barriers to deposition are
present.
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